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Multiple Antenna System
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L, transmit antennas; L,. receive antennas; p is the time block size.

;5 is the channel coefficient from 2th transmit to jth receive antenna and

IS a random variable.




Advantage of Multi-Antenna System: Capacity Gain

e Teletar (1995), Foschini and Gans (1998) proved that the capacity of a

multi-antenna system is proportional to min{ L, L, }.

— Theoretically, the more transmit and receive antennas, the better the
capacity!

— Practically, how can we achieve the capacity (gain)?

— Shannon communication theory tells us that the capacity can be achieved
by coding and modulation, BUT HOW??

—- One of the most active research areas in communications theo ry!




Single Antenna Coding and Modulation

e Low rate transmission: 1 bit modulated to 1 number/symbol (BPSK)

e High rate trasnmission: multiple bits modulated to 1 number/symbol
(M-QAM, M-PSK)

e Consider 4, 14-QAM: 2, 4 bits become a complex number/symbol:

2 bits/s/Hz
01/@/\.\00 o ole o
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These 4 points are optimal: These 16 points are almost
The mimimum distance 1s maximal optimal

16-QAM




What is Multiple Antenna Coding and Modulation:
Signal Model

e Transmit and receive signal model:

Y =AC+ W,

Y = (r!)L, xp: Received signal matrix

A = ()L, xL,: Channel coefficient matrix
C = (¢])1, xp: Transmit signal matrix
W

= (Wj ¢ )L, xp: Additive white Gassian noice (AWGN) matrix.




What is Multiple Antenna Coding and Modulation

e Multiple antenna coding/modulation: Binary information bits are
modulated/mapped into L; X p matrices and these matrices are taken from a

pre-designed matrix set called space-time code.

e How to design a space-time code: It should be designed in such a way that

the error probability at the receiver is minimized.




Space-Time Code Design Criteria

Based on the pair-wise error probability from the maximum-likelihood (ML)
decoding, Guey-Fitz-Bell-Kuo and Tarokh-Seshadri-Calderbank proposed the

following rank and diversity product criteria:
— Rank criterion : Any differece matrix of any two distinct matrices in a
space-time code C has full rank;

— Diversity product criterion  (or coding advantage or product distance):

~

¢(C) = c;n('i'jréc |det((C — C)'(C ~ )]

IS as large as possible.




Some Existing Space-Time Coding Schemes

® Space-time block codes

— BLAST-No full diversity

— Alamouti scheme-Orthogonal space-time block codes from orthogonal
designs, quasi orthogonal space-time codes— Fast decoding with good

performance BUT symbol rates are limited!

— Unitary space-time codes: Group codes, Caley transforms, parametric
codes, packing theory etc. — Good performance but no fast decoding in

general, no systematic designs!
— Space-time codes from binary linear codes — Performance is limited!

— Linear lattice based codes — Fast sphere decoding, high rates,

systematic: My focus

e Space-time trellis codes




Linear Lattice Based Space-Time Codes and
Motivation

® BLAST schemes

e (Quasi) Orthogonal space-time codes (Alamouti, Tarokh et al, Jafarkhani,

Tirkkonen et al etc.)
e Linear dispersive codes (Hassibi-Hochwald, Heath et al, Sandhu et al, etc.)

e Signal Space Diversity Codes and Diagonal Space-Time Codes using
Algebraic Number Theory (Boutros-Viterbo, Giraud-Boutillon-Belfiore,

Damen-Meraim-Belfiore, Sethuraman-Rajan, ......

— The existing lattice based space-time block codes

* Not concrete but simply some abstract algebraic numbers
* Mostly based on square QAM, i.e., square lattice.

* Not optimized in terms of diversity product




— The focus of this presentation:
* Propose a general systematic and concrete cyclotomic full diversity

lattices.
* Propose optimal cyclotomic lattices and space-time block codes in

terms of maximized diversity product for fixed mean signal power.
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General Problem Description

e Let L; be the number of transmit antennas.

e Let G be an L; x L; matrix and

[yla T ’th]T — G[Xla T 7XLt]T7

where X; are information symbols.

e A diagonal space-time code {2 consists of .; X L; matrices of the form

diag(y1, - ,¥yL,)
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e We are interested in such a diagonal space-time code (2 that

() it has the full rank property, i.e., any difference matrix of any two distinct

matrices in €2 has full rank: and

(ii) its following diversity product is as large as possible:

Ly

— : 2

= min yi — el
dlag(yla Jth)#dIag(elu'“ 7eLt)€Q 1

1=

where the transmission signal mean power of y; is fixed, or equivalently , the
transmission signal mean power is minimized, when the diversity product is

fixed.
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Cyclotomic Rings
2

Let (,,, = exp(j=Z) be the mth root of unity.

Let Z[Cm] denote the ring generated by Z, all integers, and (,,,. It is called a

cyclotomic ring.
When m = 4, Z[(,,| = Z|j| that is called Gaussian integers.
When m = 3,6, Z|(3] = Z|(s] that is called Eisenstein integers.

An important result from algebraic number theory: For a fixed L,

L
min x;| =1
(Oa 70)#()(17"' aXL)G(Z[CmDL i=1
where m = 3, 4, 6, i.e., for Gaussian or Eisenstein integers.

We next want to define cyclotomic lattices.
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Real Lattices

An n-dimensional real lattice A, (K) is a subsetin R™:

([ 7] B 7] )

Ap(K) = < : =K : i €L forl <3< mnyp,

\ L - - - /

where Z is the ring of all integers and K is an n X n real matrix of full rank

and called the generating matrix of the real lattice A, (K') and

det(An(K)) 2 | det (K)|.

Every point [z1, 22]? in a two dimensional real lattice Ao (K) is treated

equivalently as a complex number x = 1 + jx5 in the complex plane C.

For (,, = exp(j%r), we use A¢, to denote the two dimensional real lattice

14




with the generating matrix

K 1 cos(2E) | 1T Re((m)
o 0 sin(2X) o Im(Cpm)

Thus, Agm = Ao (Kcm).

® A¢,, CZGm], Mgy = ZICG] = Z[j], and A¢, = A¢g = Z[(3] = Z|Ce]

15




Complex Lattices

e Definition : An n-dimensional complex lattice I';, (G) over a two dimensional
real lattice Ao (K ) is a subset of C”:

y

I (G) = <

\

Y1

Yn

x; € Ao(K), for1 <i<mn

-~
N

/

where GG is an n X n complex matrix of full rank and called the generating

matrix of the complex lattice I',, (). The above complex lattice is called a full

diversity lattice if it satisfies

for any non-zero vector [x1, - - - , x,]7 # [0, - - -

1=1

lyi| >0

017 in (Ao (K))™
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e Examples

— Rotated Codes Based on QAM on the Square Lattice: G5 and (G4, 2-point
and 4-point DFT matrices based on Z[(4| (Boutros-Viterbo (98) and
Giraud-Boutillon-Belfiore (97))

— Good Codes for Fading Channels as well as Gaussian Channels: Dy, Ejg,
Es, G2, (3, G4 based on Z|(4] and Z|(3] (Boutros-Viterbo (98) and
Giraud-Boutillon-Belfiore (97))

— Diagonal Algebraic Space-Time Block Codes — DAST Block Codes based on
Z|C4]: M, (Boutros-Viterbo (98) and Damen-Meraim-Belfiore (02))

17




Cyclotomic Lattices

e For two positive integers n and m, let N = mn and

_ (V)
b= 5m)

where ¢(IN') and ¢(m) are the Euler numbers of /N and m, respectively.

e Then, there are total L; distinct integers n;, 1 < ¢ < Ly, with
0=mn; <ng <---<np, <n—1suchthatl 4+ n;m and N are
co-prime forany 1 < ¢ < L;.

e With these L; integers, we define

¢ (2 . Ly
N N N
14+nom 2(14n2om) o Li(14+nom)
A N N N
Gm,n —
Cl—l—nLtm C2(1—l—nLtm) o CLt(l—l—nLtm)
L SN N N .

LtXLt
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2

where (n = exp(j 57 ).

e Definition : An L; dimensional complex lattice 'z, (G', ) over A¢, is
called a cyclotomic lattice, where Gm,n is defined above and Acm is the two
dimensional real lattice with the generating matrix Kgm. Its minimum product
Aenin (UL, (Gn.p)) is defined by

Ly
min Yil -
1

1>

dmin (FLt (Gm,n))

e Some equivalent forms of Gm,n:

A 1 1+ A
Gm,n — dlag(CN7 N+n2m7 e 7CN nLtm)Gm,na

19




where

2 A
Gm,n —
_ Cnl
n
G
Gm,n — _
Cn ™"

14+noam
1 N

1
1 CN—I—nLtm

C‘in
mn

<-2n2
mn

2nLt
n

(Li—1)(14np,m)
N

CLt’I’Ll
n

CLt’I’L2
n

CLt nLt

n

Li—1

N

(Ly—1)(1+nom)

LtXLt

Lt XLt

dlag(CNa C]2V7 T

L,
»SN

e A difference with the existing results on this topic is that the above proposed

cyclotomic lattice generating matrix is concrete and systematic.

20
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e Theorem 1 : A cyclotomic lattice is a full diversity lattice.
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Cyclotomic Diagonal Space-Time Codes

Definition : A diagonal cyclotomic space-time code €2 for L; transmit
antennas is defined by 2 = {diag(y1,--- ,yr,)} where y; for

1 <1 < L; are defined as follows:

[Y17 o 7th]T — Gm,n[xla U 7XLt]

where [x1, - ,xr,]7 € S C (Z[(n])"t and S is a signal constellation

for information symbols.

Theorem 2 : A diagonal cyclotomic space-time code has full diversity.
G2 = 64,2 and G4 = GA4,4.

Question : For a transmit antenna number L, there are infinitely many
cyclotomic lattices Gm,n from infinitely many pairs (m, n) For a fixed L,
which cyclotomic lattice is optimal in the sense that, its mean transmission

power is minimized when its diversity product is fixed?

22




Optimal Cyclotomic Lattices

e The mean transmission signal power of signal points on a lattice is reciprocal

to the packing density.

e From the packing theory, the packing density is reciprocal to the absolute

value of the determinant of the generating matrix.

e The absolute value of the determinant of the generating matrix of a

cyclotomic is
| det(Gm,n)|” - [ det(Ke,, ).
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Criterion : Let 'z, (Gy ny ) @nd I'z, (Giy .y ) be two Ly dimensional
cyclotomic lattices over ACm1 and Acm2 , respectively. We say cyclotomic

lattice 'z, (G, n, ) is better than cyclotomic lattice I'z,, (G, n, ), Written
as 'z, (Gmy ny ) < T'L, (Gmgono ), if

| det(Gmy n, )|+ [ det(Ac,, )F/? < [det(Gmy n, )| - det(A,, )72,

when their minimum products are the same, i.e.,
Amin (FLt (Gml,nl )) = dmin (FLt (sz,ﬂe))-

Define the following normalized minimum product

_ dmin(ALt (Gm,n))
| det(FCm)‘Ltﬂ‘ det(Gm,n)|

Ym,n

24




e Theorem 3: If the number of transmit antennas has the form

¢(3n)  ¢(6n)

or

¢(3) — ¢(6)

then the optimal cyclotomic lattice can be achieved by an Eisenstein

Lt:

for some integer n,

cyclotomic lattice, i.e., m = 3 or . = 6, and the minimum product (or

diversity product) of the optimal cyclotomic lattice is 1.

e Examples of such L; are

Li =3 M(pg — 1) - piH(pp — 1),

where kK > 1, pa, - - - , pi, are distinct primes and different from 3, and
r1 > 0,79 > 1,--- ,1rr > 1 are integers, which covers
2,3,4,6,8,9,10,12,16,18,20,22,24,27,28,30,32,....

e Corollary : For the listed numbers, L;, of transmit antennas, the parameters
(m, n) of the optimal cyclotomic lattices ', (G, ) over A¢,  with

generating matrix Gm,n are listed in the following table.
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L, (m,n)in Gm,n Ym,n

2 (3,4),(4,3),(6,2) 7

3 (3,3),(3,6),(6,3) L1578

4 (3,5),(3,10), (6,5) 53852
6 (3,7),(3,14), (6,7) 542057
8 | (3,20),(4,15),(6,10) | 15105
9 ( ) )7(3 18)7( ) 1.030;,><104
10 | (3,11),(3,22),(6,11) | 55eeaioa
12 | (3,15),(3,30),(6,15) | 1555105
16 | (3,40),(4,30),(6,20) | s5r—os
18 | (3,21),(3,42),(6,21) | 155raiom0
20 | (3,25),(3,50),(6,25) | rorsigors
22 | (3,23),(3,46),(6,23) | Tosroms
24 (3 35)7( )’ (6 35) 9.81921>< 1013
27 | (3,27),(3,54),(6,27) | 3030851078
28 | (3,29),(3,58), (6,29) L

7.3757%x1018




Optimal Diagonal Cyclotomic Space-Time Code
Designs

e Optimal diagonal cyclotomic space-time block codes can be designed by

— selecting optimal cyclotomic lattices

— selecting signal points on the optimal cyclotomic lattices with the minimum
mean transmission power (i) the information symbols are independently

selected (ii) the information symbols are jointly selected.

e Design Examples
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Diversity Products of Diagonal Codes for Two and Four Transmit Antennas
Bit rate Space-Time Codes, L; = 2
bisiHz | Ma2-Z[j]-QAM | G2-Z[j]-QAM | G2-Z[j]-doint | Gg 2-A¢s-QAM | Gg 2-A¢, Point
1 1 1 1 1
2 147 2 2 2 2
3 1 1 1 1 1
5.5231 5 4.6562 4.3125 4.125
4 1 1 1 1 1
11.2 10 9.5703 8.75 8.2266
Bit rate Space-Time Codes, L; = 4
bisiHz | Ma-Z[j]-QAM | G4-Z[j]-QAM | G4-Z[j]-doint | Gg 5-A¢s-QAM | Gg 5-A,Point
2 1 1 1 1 |
640 256 94.15 64 43.0664
3 _1 1 1 ___1 |
1000 400 323.2265 297.5625 170.514
4 _1 _1 _1 _1 N S
4000 1600 1305.9 1225 681.841R
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Simulation Results

Symbol Error Rates for Lt=4, Bit Rate R=2 bits/s/Hz

""""""""""""""""""""""""""""""""""""""" —k— G6 5—2[16]—Joint ]

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr —— G,~Z[j]-Joint

"""""""""""""""""""""""""""""""""""""""""" —— G,~Z[j]-QAM
| - DAsT

Symbol Error Rate

10‘6 | | | | | | |
15 15.5 16 16.5 17 17.5 18 18.5 19
SNR(dB)

Figure 1: Symbol error rate, information rate R = 2 bits/s/Hz.
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Symbol Error Rates for Lt=4, Bit Rate R=3 bits/s/Hz
-1
T

""""""""""""""""""""""""""""""""""""""" e G6 5—2[16]—Joint 1

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» —— G,~Z[j]-Joint
"""""""""""""""""""""""""""""""""""""" —— G,~Z[[]-QAM

Symbol Error Rate

10

15 15.5 16 16.5 17 17.5 18 18.5 19
SNR(dB)

Figure 2: Symbol error rate, information rate R = 3 bits/s/Hz.
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Symbol Error Rates for Lt:4, Bit Rate R=4 bits/s/Hz
10 T T T T T T

[ = G ~Z[CJ=Joint f
»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» —— G,~Z[j]-Joint
""""""""""""""""""""""""""""""""""""""""""""" —— G,~Z[]-QAM

| ©- DAST

Symbol Error Rate

15 15.5 16 16.5 17 17.5 18 18.5 19
SNR(dB)

Figure 3: Symbol error rate, information rate R = 4 bits/s/Hz.
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More Results

e \We have generalized the optimal diagonal cyclotomic space-time codes to

multi-layer cyclotomic space-time codes for 2 and 3 transmit antennas

e Obtained some results on super-orthogonal trellis codes from QAM

constellations

e Obtained some results on unitary space-time code designs from APSK

signals

32



Obtained a new family of recursive space-time trellis codes

Obtained closed-form designs of complex orthogonal designs of rates
(k + 1)/(2k) for 2k or 2k + 1 transmit antennas.

Obtained some new unitary space-time codes with best and best known

diversity product diversities by using packing theory.

Obtained optimal quasi-orthogonal space-time codes with minimum decoding

complexity.

Obtained a fast iterative decoding algorithm for lattice based space-time

codes based on soft interference cancellation.

Applied some of our newly proposed space-time codes into a relay sensor

network.
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Simulation Result for Our Optimal Full Rate Full
Diversity Code: R = 4 bits/s/Hz

SER of Full Rate Cyclotomic Space Time Code for Lt=Lr=2, Rate=4 bits/s/Hz

2,0 ]
Optimal Cyclotomic Code | ‘1

SNR (dB)
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Future Research

Space-time code designs beyond cyclotomic rings: for example, Z[Cm, \@]

Optimal multi-layer cyclotomic and quadratic space-time codes for more than

3 transmit antennas

Space-time code designs for relay sensor networks to achieve optimal

cooperative diversity
Recursive space-time trellis code designs with optimal diversity products

Super quasi orthogonal space-time trellis code designs
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Conclusion

® Proposed systematic and concrete full diversity cyclotomic lattices and

space-time block codes.

e Proposed optimal cyclotomic lattices and space-time block codes by

minimizing the mean transmission power when their diversity products are

fixed.
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